³⁵Cl and ⁷⁹Br NQR Spectra in Cp₂M Hal₂

S. I. Kuznetsov, E. V. Bryukhova, T. L. Khotsyanova, and G. K. Semin Institute of Organo-Element Compounds, Academy of Sciences of Russia, 117813 Moscow, Russia

Z. Naturforsch. 49a, 627-629 (1994); received December 31, 1993

The 35 Cl and $^{79.81}$ Br NQR spectra of $(C_5H_5)_2M$ Hal $_2$ (M = Ti, Mo, W, Zr, Hf; Hal = Cl, Br) are similar. They are quadruplets with splittings ranging from 2 to 7%. The averaged frequencies of chlorine and bromine are related by a linear dependence. The temperature dependence of 81 Br in Cp_2HfBr_2 (in the range of $77 \doteqdot 224$ K) is of conventional character with frequencies slowly changing with temperature; phase transitions have not been observed.

Key words: NQR, 35Cl, 79.81Br, temperature dependence of NQR frequencies, cyclopentadienyl derivatives.

This paper is a continuation of our study of ³⁵Cl and ⁷⁹Br NQR spectra of dicyclopentadienyldihalides of Ti, Mo, W, Zr, Hf [1–4]. We have also studied the ⁸¹Br NQR frequency temperature dependence in Cp₂HfBr₂. All spectra were studied on a pulse NQR spectrometer. The obtained data are listed in Tables 1 and 2. The NQR spectra of all compounds under study look similar. They are fairly close quadruplets with splittings ranged from 2 to 7%, which corresponds to two crystallographically independent molecules in general position. X-ray structures are known for Cp₂TiCl₂ [5, 6], Cp₂ZrCl₂ and Cp₂MoCl₂ [7]. The crystal structures of the other compounds have not been determined.

However, judging by the spectra one can assume that, for one, the dichloride and dibromide crystals of the same metal be isomorphous. Secondly, Cp_2MHal_2 compounds, where M=Zr, Hf, Ti and Hal=Cl, Br, are isostructural at low temperatures. Quadruplet NQR spectra of ^{35}Cl and ^{79}Br in Cp_2ZrHal_2 are in full agreement with the crystal structure where two crystallographically independent molecules are in general position in space group $P\overline{l}$, determined for Cp_2ZrCl_2 [7]. Cp_2HfCl_2 and Cp_2HfBr_2 must have the same structure. Dicyclopentadienyl titanium dichloride, Cp_2TiCl_2 is isostructural with Cp_2ZrCl_2 [5, 7].

The similar behavior of chlorine and bromine NQR frequencies for the whole series resulted in linear dependences between ³⁵Cl and ⁷⁹Br for analogous com-

Reprint requests to Dr. E. V. Bryukhova, Institute of Organo-Element Compounds, Academy of Sciences of Russia, 28 Vavilov Street, 117813 Moscow, Russia.

Table 1. 35Cl and 79Br NQR Spectra in Cp₂M Hal₂ at 77 K.

v, MHz	I Zr	Hf	Ti	Mo	W
³⁵ Cl	8.583 [1,2 8.763 8.788 8.868]	11.764 [3] 11.884 12.028 12.208	16.875 [4] 17.098 17.273 17.273	17.723 [4] 17.772 17.804 18.063
⁷⁹ Br	71.794 [1] 72.530 74.158 74.921	76.84 77.36 79.14 79.98	93.33 [3] 97.58 97.81 100.02		139.810 [4] 142.194 143.130 144.294

Table 2. Temperature dependence of ⁸¹Br NQR frequencies in Cp₂HfBr₂.

T, K	v, MHz	T, K	v, MHz	T, K	v, MHz
77	64.21 64.66 66.12 66.82	135.0	64.15 64.61 66.04 66.60	189.0	64.04 64.51 66.28
88.9	64.19 64.65 66.11 66.79	145.2	64.14 64.60 66.01 66.54	201.2	64.01 64.48 66.19
101.2	64.18 64.63 66.09 66.74	156.7	64.12 64.58 65.99 66.49	213.0	63.99 64.45 66.10
113.8	64.17 64.63 66.08 66.69	167.8	64.09 64.57 65.97 66.42	224.5	63.97 64.41 66.00
124.8	64.16 64.62 66.06 66.65	178.3	64.07 64.54 65.95 66.36		

0932-0784 / 94 / 0400-0627 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

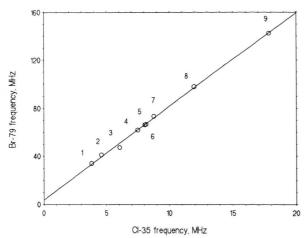


Fig. 1. Mutual dependence of ³⁵Cl and ⁷⁹Br NQR frequencies in Cp_nM Hal_{4-n}. 1 and 4: Zr Hal₄; 2 and 5: Hf Hal₄; 3: Ti Hal₄; 6: CpTi Hal₃; 7: Cp₂Zr Hal₂; 8: Cp₂Ti Hal₂; 9: Cp₂W Hal₂.

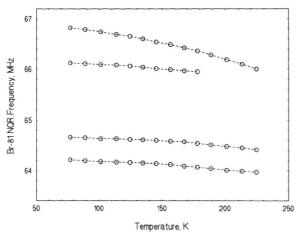


Fig. 2. Temperature dependence of 81 Br NQR frequencies in Cp_2HfBr_2 .

pounds (see Figure 1). The same dependence is also valid for halogen frequencies in CpTiHal₃, ZrHal₄ and HfHal₄.

NQR frequencies averaged over crystalline splittings are related by the equations

$$v(^{79}\text{Br}) = [3.808 + 7.784 \, v(^{35}\text{Cl})] \pm 1.06 \, \text{MHz};$$

 $n = 9, \, r = 0.9989, \quad (1)$

$$v(^{35}\text{Br}) = [-0.469 + 0.128 v(^{79}\text{Br})] \pm 0.14 \text{ MHz};$$

 $n = 9, r = 0.9989.$ (2)

The spectral lines of Zr Hal₄ and Hf Hal₄, which are strongly split due to the intermolecular coordination

interactions, were not included in the averaging, but compared separately (which explains nine dots for seven compounds on the plot, see Figure 1). Equations (1) and (2) allowed us to estimate unknown average NQR frequencies for $\text{Cp}_2\text{Hf}^{35}\text{Cl}_2$ (≈ 9.57 MHz) and $\text{Cp}_2\text{Mo}^{79}\text{Br}_2$ (≈ 137.15 MHz).

As we have noted earlier, the behavior of halogen NQR frequencies in cyclopentadienyl titanium halides is markedly affected by involving the halogen p_r-orbitals into bonding with the metal d-orbitals [3]. The latter, on one hand, results in an essential decrease in the halogen NQR frequencies of TiCl₄ (compared with expected ones in accordance with the titanium electronegativity), and, on the other hand, in their sharp increase with increasing Cp-ring number in Cp_nTiCl_{4-n} molecules. Recently we have observed a similar phenomenon while studying NQR spectra of zirconium cyclopentadienyl halides [8] in the series of mono- and bis(cyclopentadienyl) complexes. In these substances, despite a large variety of ligands attached to the metal atom, the NQR frequencies of the substance with one cyclopentadienyl ring are lower than those of that with two cyclopentadienyl rings. In this case we have not a large amount of experimental data. However, comparing the chlorine and bromine NQR frequencies in the series under study, we can observe that the less the p_{π} -halogen orbitals can be involved in the bonding with the transition element, the higher are the frequencies of respective compounds.

Earlier we have studied temperature dependences of halogen NQR frequencies in Cp₂TiCl₂, Cp₂ZrCl₂ and Cp₂ZrBr₂ [2]. For Cp₂TiCl₂ we observed a phase transition with a smooth multiplicity change, which is obviously related with a second order transition. We observed no phase transition in the temperature dependences of Cp₂ZrCl₂ and Cp₂ZrBr₂; the temperature changes are conventional, monotonous and weak. The temperature dependence of the ⁸¹Br NQR frequency in Cp₂HfBr₂, given in Table 2 and Fig. 2 is similar; it is monotonous, with no phase transitions in the temperature range under study*. The temperature changes are conventional and small, more pronounced with the high frequency doublet.

Thus, the halogen NQR frequencies in Zr, Hf, Ti, Mo, W dicyclopentadienyl dihalides behave similarly; the chlorine and bromine frequencies in analogous compounds are related by a linear equation. However,

^{*} One of the lines was not detected above 178 K due to jamming.

the monotony in the frequency changes when moving from the top to the bottom of the Mendeleev table is not observed for the Ti-Zr-Hf series (Zr < Hf < Ti). In the same way, for derivatives of group VI (Mo < W). Acknowledgement

The authors thank M. Kh. Minacheva for procuring the Cp₂HfBr₂ specimen.

- [1] S. I. Kuznetsov and E. V. Bryukhova, Izv. AN SSSR. Ser. Khim, 1895 (1979).
- [2] S. I. Kuznetsov and E. V. Bryukhova, and G. K. Semin, Izv. AN SSSR. Ser. Fiz. 45, 476 (1981).
 [3] E. V. Bryukhova and G. K. Semin, I. M. Alymov, A. N. Nesmeyanov, O. V. Nogina, V. A. Dubovitsky, and S. I. Kuznetsov, J. Oganomet. Chem. 81, 195 (1974).
- [4] E. V. Bryukhova, S. I. Kuznetsov, and G. K. Semin, Izv.
- AN SSSR. Ser. Khim. 1979, 459. [5] V. V. Tkachev, L. O. Atovmyan, Zh. Struct. Khim. 13, 287 (1972).
- [6] A. Clearfield and D. K. Warner, C. H. Saldarriaga-Molina, C. H. Ropal, and I. Bernal, Can. J. Chem. 53, 1622 (1975).
- [7] K. Pront, T. S. Cameron, R. A. Forder, S. R. Critchley, B. Denton, and G. V. Rees, Acta Crystallogr. 30 B, 2290
- [8] M. Kh. Minacheva, O. A. Mikhailova, E. V. Bryukhova, S. I. Kuznetsov, and E. M. Brainina, Metalloorganich. Khimiya 1, 433 (1988).